class Pin – control I/O pins
A pin object is used to control I/O pins (also known as GPIO - general-purpose
input/output). Pin objects are commonly associated with a physical pin that can
drive an output voltage and read input voltages. The pin class has methods to set the mode of
the pin (IN, OUT, etc) and methods to get and set the digital logic level.
For analog control of a pin, see the ADC
class.
A pin object is constructed by using an identifier which unambiguously specifies a certain I/O pin. The allowed forms of the identifier and the physical pin that the identifier maps to are port-specific. Possibilities for the identifier are an integer, a string or a tuple with port and pin number.
Usage Model:
from machine import Pin
# create an output pin on pin #0
p0 = Pin(0, Pin.OUT)
# set the value low then high
p0.value(0)
p0.value(1)
# create an input pin on pin #2, with a pull up resistor
p2 = Pin(2, Pin.IN, Pin.PULL_UP)
# read and print the pin value
print(p2.value())
# reconfigure pin #0 in input mode with a pull down resistor
p0.init(p0.IN, p0.PULL_DOWN)
# configure an irq callback
p0.irq(lambda p:print(p))
- class machine.Pin
Control I/O pins
A pin object is used to control I/O pins (also known as GPIO - general-purpose input/output). Pin objects are commonly associated with a physical pin that can drive an output voltage and read input voltages. The pin class has methods to set the mode of the pin (IN, OUT, etc) and methods to get and set the digital logic level. For analog control of a pin, see the
ADC
class.A pin object is constructed by using an identifier which unambiguously specifies a certain I/O pin. The allowed forms of the identifier and the physical pin that the identifier maps to are port-specific. Possibilities for the identifier are an integer, a string or a tuple with port and pin number.
Usage Model:
from machine import Pin # create an output pin on pin #0 p0 = Pin(0, Pin.OUT) # set the value low then high p0.value(0) p0.value(1) # create an input pin on pin #2, with a pull up resistor p2 = Pin(2, Pin.IN, Pin.PULL_UP) # read and print the pin value print(p2.value()) # reconfigure pin #0 in input mode with a pull down resistor p0.init(p0.IN, p0.PULL_DOWN) # configure an irq callback p0.irq(lambda p:print(p))
- class Pin(id, mode=-1, pull=-1, *, value=None, drive=0, alt=-1)
Access the pin peripheral (GPIO pin) associated with the given
id
. If additional arguments are given in the constructor then they are used to initialise the pin. Any settings that are not specified will remain in their previous state.The arguments are:
id
is mandatory and can be an arbitrary object. Among possible value types are: int (an internal Pin identifier), str (a Pin name), and tuple (pair of [port, pin]).mode
specifies the pin mode, which can be one of:Pin.IN
- Pin is configured for input. If viewed as an output the pin is in high-impedance state.Pin.OUT
- Pin is configured for (normal) output.Pin.OPEN_DRAIN
- Pin is configured for open-drain output. Open-drain output works in the following way: if the output value is set to 0 the pin is active at a low level; if the output value is 1 the pin is in a high-impedance state. Not all ports implement this mode, or some might only on certain pins.Pin.ALT
- Pin is configured to perform an alternative function, which is port specific. For a pin configured in such a way any other Pin methods (exceptPin.init()
) are not applicable (calling them will lead to undefined, or a hardware-specific, result). Not all ports implement this mode.Pin.ALT_OPEN_DRAIN
- The Same asPin.ALT
, but the pin is configured as open-drain. Not all ports implement this mode.Pin.ANALOG
- Pin is configured for analog input, see theADC
class.
pull
specifies if the pin has a (weak) pull resistor attached, and can be one of:None
- No pull up or down resistor.Pin.PULL_UP
- Pull up resistor enabled.Pin.PULL_DOWN
- Pull down resistor enabled.
value
is valid only for Pin.OUT and Pin.OPEN_DRAIN modes and specifies initial output pin value if given, otherwise the state of the pin peripheral remains unchanged.drive
specifies the output power of the pin and can be one of:Pin.DRIVE_0
,Pin.DRIVE_1
, etc., increasing in drive strength. The actual current driving capabilities are port dependent. Not all ports implement this argument.alt
specifies an alternate function for the pin and the values it can take are port dependent. This argument is valid only forPin.ALT
andPin.ALT_OPEN_DRAIN
modes. It may be used when a pin supports more than one alternate function. If only one pin alternate function is supported the this argument is not required. Not all ports implement this argument.
As specified above, the Pin class allows to set an alternate function for a particular pin, but it does not specify any further operations on such a pin. Pins configured in alternate-function mode are usually not used as GPIO but are instead driven by other hardware peripherals. The only operation supported on such a pin is re-initialising, by calling the constructor or
Pin.init()
method. If a pin that is configured in alternate-function mode is re-initialised withPin.IN
,Pin.OUT
, orPin.OPEN_DRAIN
, the alternate function will be removed from the pin.- ALT
Selects the pin mode.
- ALT_OPEN_DRAIN
Selects the pin mode.
- ANALOG
Selects the pin mode.
- DRIVE_0
Selects the pin drive strength. A port may define additional drive constants with increasing number corresponding to increasing drive strength.
- DRIVE_1
Selects the pin drive strength. A port may define additional drive constants with increasing number corresponding to increasing drive strength.
- DRIVE_2
Selects the pin drive strength. A port may define additional drive constants with increasing number corresponding to increasing drive strength.
- IN
Selects the pin mode.
- IRQ_FALLING
Selects the IRQ trigger type.
- IRQ_HIGH_LEVEL
Selects the IRQ trigger type.
- IRQ_LOW_LEVEL
Selects the IRQ trigger type.
- IRQ_RISING
Selects the IRQ trigger type.
- OPEN_DRAIN
Selects the pin mode.
- OUT
Selects the pin mode.
- PULL_DOWN
Selects whether there is a pull up/down resistor. Use the value
None
for no pull.
- PULL_HOLD
Selects whether there is a pull up/down resistor. Use the value
None
for no pull.
- PULL_UP
Selects whether there is a pull up/down resistor. Use the value
None
for no pull.
- __call__(x: Any | None = None)
Pin objects are callable. The call method provides a (fast) shortcut to set and get the value of the pin. It is equivalent to Pin.value([x]). See
Pin.value()
for more details.
- __init__(id, mode=-1, pull=-1, *, value=None, drive=0, alt=-1)
- drive(drive: Any | None = None)
Get or set the pin drive strength. See the constructor documentation for details of the
drive
argument.Availability: cc3200 port.
- high()
Set pin to “1” output level.
Availability: nrf, rp2, stm32 ports.
- init(mode=-1, pull=-1, *, value=None, drive=0, alt=-1)
Re-initialise the pin using the given parameters. Only those arguments that are specified will be set. The rest of the pin peripheral state will remain unchanged. See the constructor documentation for details of the arguments.
Returns
None
.
- irq(handler=None, trigger=IRQ_FALLING, *, priority=1, wake=None, hard=False)
Configure an interrupt handler to be called when the trigger source of the pin is active. If the pin mode is
Pin.IN
then the trigger source is the external value on the pin. If the pin mode isPin.OUT
then the trigger source is the output buffer of the pin. Otherwise, if the pin mode isPin.OPEN_DRAIN
then the trigger source is the output buffer for state ‘0’ and the external pin value for state ‘1’.The arguments are:
handler
is an optional function to be called when the interrupt triggers. The handler must take exactly one argument which is thePin
instance.trigger
configures the event which can generate an interrupt. Possible values are:Pin.IRQ_FALLING
interrupt on falling edge.Pin.IRQ_RISING
interrupt on rising edge.Pin.IRQ_LOW_LEVEL
interrupt on low level.Pin.IRQ_HIGH_LEVEL
interrupt on high level.
These values can be OR’ed together to trigger on multiple events.
priority
sets the priority level of the interrupt. The values it can take are port-specific, but higher values always represent higher priorities.wake
selects the power mode in which this interrupt can wake up the system. It can bemachine.IDLE
,machine.SLEEP
ormachine.DEEPSLEEP
. These values can also be OR’ed together to make a pin generate interrupts in more than one power mode.hard
if true a hardware interrupt is used. This reduces the delay between the pin change and the handler being called. Hard interrupt handlers may not allocate memory; see Writing interrupt handlers. Not all ports support this argument.
This method returns a callback object.
The following methods are not part of the core Pin API and only implemented on certain ports.
- low()
Set pin to “0” output level.
Availability: nrf, rp2, stm32 ports.
- mode(mode: Any | None = None)
Get or set the pin mode. See the constructor documentation for details of the
mode
argument.Availability: cc3200, stm32 ports.
- off()
Set pin to “0” output level.
- on()
Set pin to “1” output level.
- pull(pull: Any | None = None)
Get or set the pin pull state. See the constructor documentation for details of the
pull
argument.Availability: cc3200, stm32 ports.
- value(x: Any | None = None)
This method allows to set and get the value of the pin, depending on whether the argument
x
is supplied or not.If the argument is omitted then this method gets the digital logic level of the pin, returning 0 or 1 corresponding to low and high voltage signals respectively. The behaviour of this method depends on the mode of the pin:
Pin.IN
- The method returns the actual input value currently present on the pin.Pin.OUT
- The behaviour and return value of the method is undefined.Pin.OPEN_DRAIN
- If the pin is in state ‘0’ then the behaviour and return value of the method is undefined. Otherwise, if the pin is in state ‘1’, the method returns the actual input value currently present on the pin.
If the argument is supplied then this method sets the digital logic level of the pin. The argument
x
can be anything that converts to a boolean. If it converts toTrue
, the pin is set to state ‘1’, otherwise it is set to state ‘0’. The behaviour of this method depends on the mode of the pin:Pin.IN
- The value is stored in the output buffer for the pin. The pin state does not change, it remains in the high-impedance state. The stored value will become active on the pin as soon as it is changed toPin.OUT
orPin.OPEN_DRAIN
mode.Pin.OUT
- The output buffer is set to the given value immediately.Pin.OPEN_DRAIN
- If the value is ‘0’ the pin is set to a low voltage state. Otherwise the pin is set to high-impedance state.
When setting the value this method returns
None
.